

# Long-term revenue optimization with flexible products in Airline Revenue Management



Sebastian Vock – Freie Universität Berlin

DOWONO 2014 22-24 May 2014, Clausthal-Zellerfeld









#### **Traditional Revenue Management Process**



### **Flexible Products in Airline RM**

A **flexible product** is a product in which one or more attributes are not fully specified when the product is sold.<sup>1</sup>

- Who specifies the missing attributes?
- When will the remaining attributes be specified?



Final allocation to a specific product

<sup>1</sup>Gallego, G. & Phillips, R. (2004). Revenue management of flexible products. *Manufacturing & Service Operations Management, 6*(4).

Customer

Variable

Flexibility

Seller

Fixed

Flexibility

#### **Flexible Products in Revenue Management**

#### Hotwire<sup>®</sup>







#### Register for GetGoing

#### save up to 40% on flights with Pick Two, Get One™

Checkout faster, view all of your bookings in one place and see where your Facebook friends have been



















6

#### **Flexible Products – Benefits & Shortcomings**

- Flexible products are a chance for airlines, because they
  - improve the usage of existing capacities<sup>1</sup>
  - react on unforeseen events during the actual booking horizon<sup>2</sup>
  - acquire potential low-cost carrier customers <sup>3</sup>
- But: Existing methods are more or less predictable and customers
  - already anticipate the offered options
  - act strategic, even if they book flexible products
  - are obviously not indifferent between the offered options<sup>4</sup>



Geil ich kanntr das gar nicht. Klingt aber sehr gut (2) und wenn man dann sowas wie Hamburg ausschließt für 5 €, weiß man auch dass man ins ausland kommt. 12. September 2013 um 23:03 · Gefällt mir

- <sup>1</sup> Post, D. (2010). Variable opaque products in the airline industry: A tool to fill the gaps and increase revenues. *Journal of Revenue & Pricing Management, 9*(4).
- <sup>2</sup> Gallego, G. & Phillips, R. (2004). Revenue management of flexible products. *Manufacturing & Service Operations Management, 6*(4).
- <sup>3</sup> Mang, S., Spann, M., Post, D., 2009. Implementierung eines Interaktive price response systems bei einer low cost airline. *Business Services: Konzepte, Technologien, Anwendungen*, 247.
- <sup>4</sup> Lee, M., Khelifa, A., Garrow, L., Bierlaire, M. & Post, D. (2012). An analysis of destination choice for opaque airline products using multidimensional binary logit models. *Transportation Research Part A: Policy and Practice, 46*(10).

## **My Proposal: Flexible Products with Preferences**

What if airlines could turn the tables by introducing preferences?



- Airlines
  - could gain additional information
  - increase flexibility
- Customers
  - think to reduce uncertainty
  - but take more uncertainty



#### **Expected Behavior – Short-term Revenue**















#### **Allocation Model**

$$\max\left(\alpha \cdot \sum_{b \in B} O(\Delta \pi(b)) + (1-\alpha) \cdot \sum_{b \in B} V(q(b)^T \cdot x(b))\right)$$

 $\mathbb{1}^T \cdot x(b) = 1$  $\forall b \in \mathcal{B}$ Allocation constraint  $\mathbb{1}^T \left( x(b)^T \cdot M(b) \right) = 1$  $\forall b \in \mathcal{B}$ Feasibility constraint

Capacity constraint

 $\in \mathbb{R}$ 

x(b)

y(b)

M(b)

q(b)

S

С

 $\in \{0,1\}^{n^s}$ 

 $\in [0,1]^{n^s}$ 

 $\in [0,1]^{n^s}$ 

 $\in \{0,1\}^{n^s \times n^s}$ 

 $\in \mathbb{R}^{n^s}$ 

 $\in \mathbb{R}$ 

$$\sum_{b \in \mathcal{B}} \left( A \cdot x(b)^T \right) + A \cdot s \le c$$

$$y(b)^T \cdot A \cdot \pi - x(b)^T \cdot A \cdot \pi = \Delta \pi(b)$$

$$(b)^{r} \cdot A \cdot \pi - x(b)^{r} \cdot A \cdot \pi = \Delta \pi(b)$$
 Opportunity costs  
 $x(b) \in \{0, 1\}^{n^{s}}$  Binary constraint  
Opportunity costs per unit of capacity  $\pi \in \mathbb{R}$   
Additional opportunity costs of booking  $b \Delta \pi(b) \in \mathbb{R}$   
Incidence matrix for resources  $A \in [0,1]^{h \times n^{s}}$ 

 $\forall b \in \mathcal{B}$  $\forall b \in \mathcal{B}$ 

 $\alpha \in [0,1]$ 

| -     |      |     |     | -    |      |   | _    | 0-     |      |   |
|-------|------|-----|-----|------|------|---|------|--------|------|---|
| Incid | lenc | e m | atr | ix   | for  | e | xe   | cution | mode | 5 |
| Cana  | city | NO  | -to | r fa | or r |   | - 01 | Ircoc  |      |   |

Reallocation of booking *b* 

Previous allocation of booking *b* 

Number of specific bookings

Capacity vector for resources Preferences for set of specific products

#### **Long-term Orientation**

- Flexible products with preferences afford an ideal opportunity
  - Easy integration of long-term effects
  - Maximization of customer satisfaction means maximization of customer welfare











### **Experimental Design**



