
Optimale Steuerung von eCarSharing-Netzwerken anhand eines Ablaufplanungsproblems

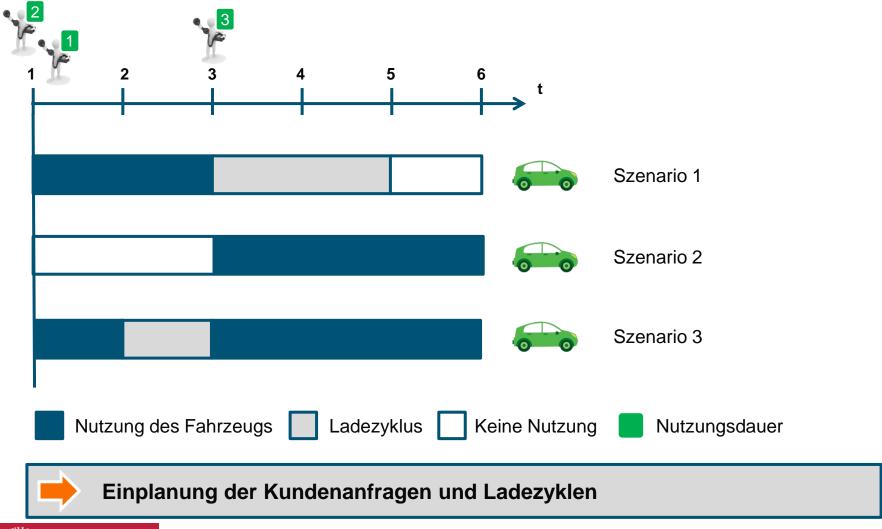
Natalia Stepien 16. DoWoNO, 24.Mai 2014

Kooperatives Promotionsprogramm Elektromobilität (KPE)

Ziel

Grundlegende Ansätze und Konzepte für die Generation 2020+ von Elektromobilität interdisziplinär in den Sektoren Automobil, Energie und IKT zu erforschen und so das reibungslose Zusammenspiel zwischen dem Smart E-Grid, dem Smart E-Mobil und dem Smart E-Traffic zu erreichen.

Projektpartner:



Ladezyklen in der Steuerung von eCarSharing-Netzwerken

Steuerung im eCarSharing als Ablaufplanungsproblem

Merkmal	Ablaufplanungsproblem	eCarSharing	
Produktionsstruktur	parallele Maschinen	Flotte elektrischer Fahrzeuge	
Auftragszugangsprozess 1	dynamische Auftragszugänge mit stochastischen Merkmalen	Unsichere, zeitlich verteilt eintreffende Kundenanfragen	
Auftragszugangsprozess 2	dynamische Auftragszugänge mit deterministischen Merkmalen	Batterierestriktionen (minimaler und maximaler Ladestatus, Dauer des Ladezyklus)	
Bearbeitungsprozess	Stochastische Bearbeitungszeiten	Unsichere Nutzungsdauer	
Zielsetzung	Maximale Kapazitätsauslastung	Deckungsbeitragsmaximieru ng (und maximale Kapazitätsauslastung)	

Zielsetzung des Ablaufplanungsproblems im eCarSharing

Ziel

Optimale Einplanung der Kundenanfragen und der Ladezyklen.

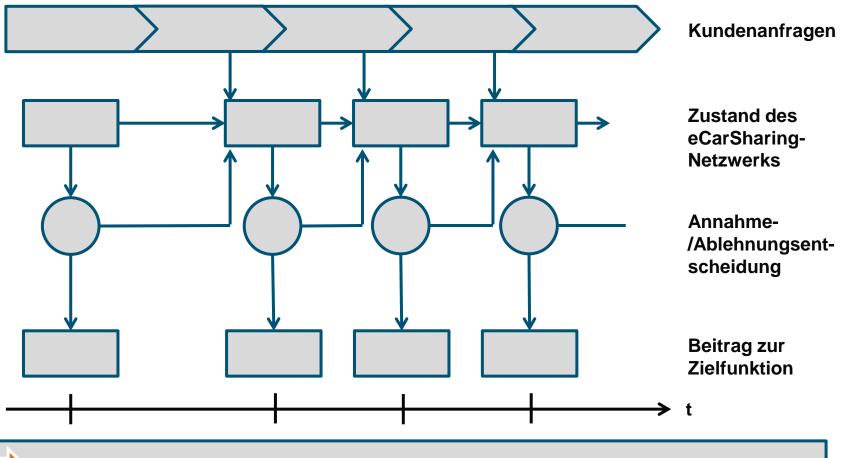
Unter Berücksichtigung

- Unsicherer, zeitlich verteilt eintreffender Kundenankünfte und unsicherer Nutzungsdauern
- Buchungsbedingungen keine Vorausbuchung möglich
- Langen Ladezyklen
- Zeitlicher Abhängigkeiten/Ablaufbedingter Restriktionen
- Tarifsystem

Erstellung eines Ablaufplans unter Berücksichtigung der Nachfragestruktur sowie der hieraus resultierenden Ladezyklen

Berücksichtigung der Anforderungen in bestehenden Ansätzen - Literaturübersicht

Anforderungen der Steuerung im eCarSharing	Offline Scheduling	Online Scheduling	 Revenue Management
Ablehnungsmöglichkeit der Kundenanfragen	Leyer (2011) Franck et al. (1996)	Arndt et al. (2000)	Talluri/van Ryzin (2004) Waserhole/Jost (2013)
Einplanung der Anfrage zum Zeitpunkt des Eintritts	-	-	Uesugi (2007) Waserhole/Jost (2013)
Abbildung der zeitlichen Abhängigkeiten	Zimmermann (2001) Franck et al. (1996)	Arndt et al. (2000)	-


Entwicklung eines Modells, das beide Ansätze berücksichtigt

Ausblick:

Stochastisch-dynamischer Entscheidungsprozess

Umsetzung des Prozesses in ein geeignetes Modell

Quelle: Meisel (2011), S. 14.

Vielen Dank für Ihre Aufmerksamkeit!

Natalia Stepien

+49 531 391-63090 n.stepien@tu-braunschweig.de

