

Multikriterielle Bewertung der Nachhaltigkeit von Biomassenutzungskonzepten über die Ansetzung adäquater Referenzpunkte

- 1. Forschungsfrage
- 2. Integration von Erkenntnissen der Prospect Theory in PROMETHEE
- 3. Beispielhafte Anwendung
- 4. Zusammenfassung und Ausblick

Multikriterielle Entscheidungsunterstützung zur Identifikation von nachhaltigen Biomassenutzungskonzepten

Oberziel:

Identifikation eines Konzeptes zur nachhaltigen energetischen Nutzung von Biomasse

Vielschichtige Kritik führt zu einem multikriteriellen Entscheidungsproblem:

- ökonomisch: Notwendige Subventionen und Interessen der Landwirte
- ökologisch: Etablierung von Monokulturen ("Vermaisung")
- sozial: Sinkende Akzeptanz in der lokalen Bevölkerung

Forschungsfrage:

Entwicklung und Anwendung einer **geeigneten** Methode der multikriteriellen Entscheidungsunterstützung für die Bewertung hinsichtlich Nachhaltigkeit

Anforderungen an geeignete MCDA-Methode

1. Anforderung an MCDA-Methoden: Integration einer geeigneten Referenz

- Oft nur Vergleich verschiedener Konzepte und Berücksichtigung von Nachhaltigkeit über den Aufbau der Kriterienhierarchie
- Einbeziehung einer Referenzgröße, anhand derer festgestellt werden soll, ob das Konzept auch wirklich nachhaltig ist

2. Anforderung an MCDA-Methoden: Einbeziehung von Verhaltenseffekten

- Menschen bewerten nicht rational (kognitive Verzerrungen)
- Erkenntnisse der Prospect Theory:
 - Menschen bewerten anhand von Referenzpunkten
 - Einteilung in "Gewinne" und "Verluste"
 - Menschen weisen Verlustaversion in ihren Entscheidungen auf
 - Subjektive Bewertung von Eintrittswahrscheinlichkeiten

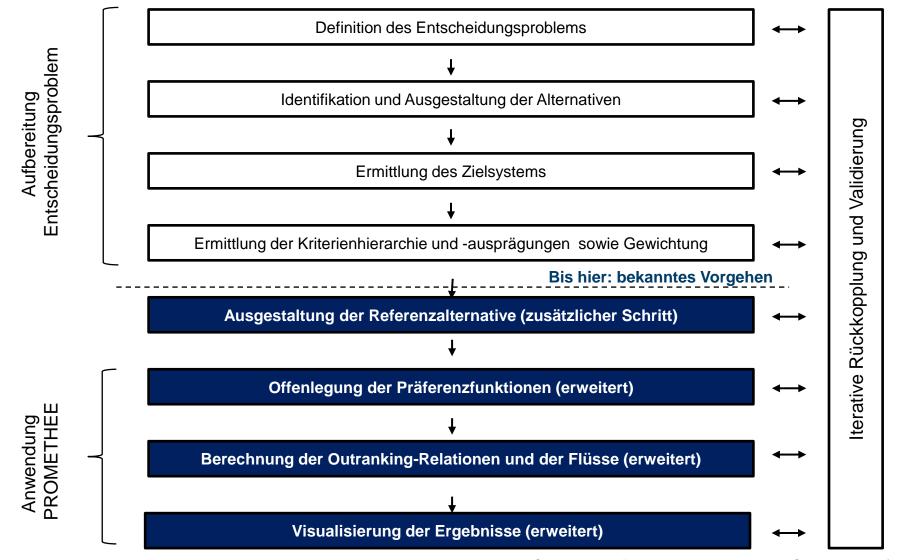
Bewertung anhand eines Referenzpunktes als Schnittstelle zwischen Integration von Verhaltenseffekten und MCDA für Nachhaltigkeit

Gründe der Wahl von PROMETHEE:

- Paarweise Vergleiche und Präferenzfunktionen
- Entscheider ist sich seiner Präferenzen nicht bewusst → Entscheidungsunterstützung

Ansatzpunkte zur Integration der Prospect Theory in PROMETHEE:

- Menschen bewerten anhand von Referenzpunkten → Referenzalternative
- Einteilung in Gewinne und Verluste → Referenzalternative und Präferenzfunktion
- Menschen weisen Verlustaversion auf → Präferenzfunktion


Ziele der Integration:

- Aussage hinsichtlich tatsächlicher Nachhaltigkeit
- Offenlegung weiterer Informationen und Abbildung von tatsächlichem Entscheidungsverhallten (Verlustaversion)

Quelle: Brans et al. (1986)

Schematischer Ablauf des um Prospect Theory erweiterten PROMETHEE

Quelle: eigene Darstellung in Anlehnung an Oberschmidt, J. (2010)

Ausgestaltung der Referenzalternative

Einführung einer fiktiven Alternative:

Um als Benchmark für Nachhaltigkeit zu fungieren, muss die Nachhaltigkeitsreferenz für sämtliche Kriterien definiert sein

Verschiedene Potenzielle Referenzgrößen weisen jeweils Vor- und Nachteile auf:

Referenzpunkt	Vorteil	Nachteil
Status quo	Datenerhebung; gute Orientierung	Eventuell nicht nachhaltig
Aspiration level	Anspruchsniveaus können definiert werden; Informationen; Wirkliche Nachhaltigkeitsgrenzen	Datenerhebung schwierig; Viel Spielraum; eventuell schwierig zu übertreffen
Minimal- anforderung	Ähnlich Aspiration Level; kann gut übertroffen werden; Sicherheitsprinzip	Datenerhebung schwierig

Einführung einer fiktiven Alternative auf Basis von multiplen Referenzpunkten

Offenlegung der (erweiterten) Präferenzfunktion

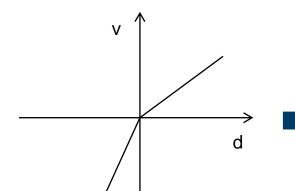
Einführung von Gewinn- und Verlustfunktionen:

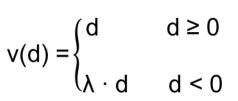
- Prämisse: Berechnung möglichst konsistent halten
- Bei paarweisen Vergleichen der zu bewertenden Alternativen und bei Vergleichen mit Referenz (potenzielle Gewinne): bekanntes Vorgehen
- Paarweise Vergleiche mit Referenz (potenzielle Verluste): Anpassung von normaler Präferenzfunktion um Faktor λ für Verlustaversion

Vorgehen zur Einbeziehung von Gewinnen und Verlusten:

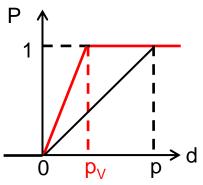
Wenn ein **Gewinn** vorliegt: Wenn ein **Verlust** vorliegt:

 $P(A_{RP}, A_i) \rightarrow 0$ $P(A_{RP}, A_i) \rightarrow P$ -Wert (Verlustfunktion)


 $P(A_i, A_{RP}) \rightarrow P\text{-Wert (normal)}$ $P(A_i, A_{RP}) \rightarrow 0$



Als Ausgangspunkt zur Integration von λ dient die Präferenzfunktion vom Typ 3


Übertragung des Faktors λ auf die Präferenzfunktion vom Typ 3 in PROMETHEE:

Prospect Theory (Stückweise linear)

Erweitertes
PROMETHEE
(Typ 3)

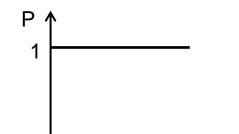
$$P_{V}(d) = \begin{cases} 0 & d \le 0 \\ \frac{d \cdot \lambda}{p} & 0 < d \le \frac{p}{\lambda} \\ 1 & d > \frac{p}{\lambda} \end{cases}$$

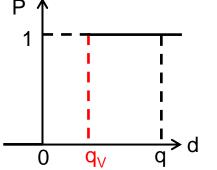
Herleitung Berechnung Schwellenwert

$$p \cdot m = 1 \cap p_{V} \cdot m \cdot \lambda = 1$$

$$p \cdot m = p_V \cdot m \cdot \lambda$$

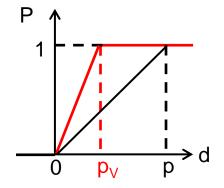
$$p = p^{\Lambda} \cdot y$$


$$p_V = \frac{p}{\lambda}$$



Verwendung der bekannten sechs Präferenzfunktionen und **Erweiterung dieser um Verlustaversion (1/2)**

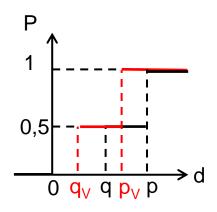
Typ 1: Gewöhnliches Kriterium



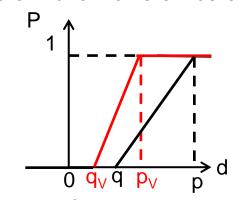
Typ 2: Quasi-Kriterium

$$P(d) = \begin{cases} 0 & d \le 0 \\ 1 & d > 0 \end{cases} \qquad P(d) = \begin{cases} 0 & d \le q \\ 1 & d > q \end{cases}$$

$$P_{V}(d) = \begin{cases} 0 & d \le \frac{q}{\lambda} \\ 1 & d > \frac{q}{\lambda} \end{cases}$$

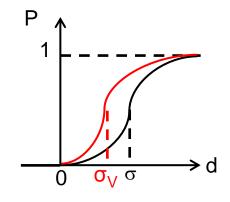

$$P(d) = \begin{cases} 0 & d \le 0 \\ \frac{d}{p} & 0 \le d \le p \\ 1 & d > p \end{cases}$$

$$P_{V}(d) = \begin{cases} 0 & d \le 0 \\ \frac{d \cdot \lambda}{p} & 0 < d \le \frac{p}{\lambda} \\ 1 & d > \frac{p}{\lambda} \end{cases}$$


Verwendung der bekannten sechs Präferenzfunktionen und **Erweiterung dieser um Verlustaversion (2/2)**

Typ 4: Stufen-Kriterium

$$P(d) = \begin{cases} 0 & d \le q \\ \frac{1}{2} & q < d \le p \\ 1 & d > p \end{cases}$$


Typ 5: Kriterium mit linearer Präferenz und Indifferenzbereich

$$P(d) = \begin{cases} 0 & d \le q \\ \frac{1}{2} & q < d \le p \\ 1 & d > p \end{cases} \qquad P(d) = \begin{cases} 0 & d \le q \\ \frac{d-q}{p-q} & q < d \le p \\ 1 & d > p \end{cases}$$

$$P_{V}(d) = \begin{cases} 0 & d \leq \frac{q}{\lambda} \\ 0,5 & \frac{q}{\lambda} < d \leq \frac{p}{\lambda} \end{cases} \quad P_{V}(d) = \begin{cases} 0 & d \leq \frac{q}{\lambda} \\ \frac{d \cdot \lambda - q}{p - q} & \frac{q}{\lambda} < d \leq \frac{p}{\lambda} \\ 1 & d > \frac{p}{\lambda} \end{cases} \quad P(d) = \begin{cases} 0 & d \leq 0 \\ 1 - e^{-\frac{\lambda \cdot d^{2}}{2\sigma^{2}}} & d > 0 \end{cases}$$

Typ 6: Gauß'sches Kriterium

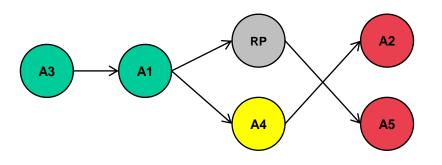
$$P(d) = \begin{cases} 0 & d \le 0 \\ 1 - e^{-\frac{d^2}{2\sigma^2}} & d > 0 \end{cases}$$

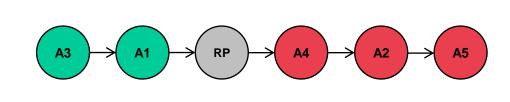
$$P(d) = \begin{cases} 0 & d \le 0 \\ 1 - e^{-\frac{\lambda \cdot d^2}{2\sigma^2}} & d > 0 \end{cases}$$

Berechnung der Outranking-Relationen und Visualisierung (erweitert)

Formeln zur Berechnung der Outranking-Relationen:

Paarweise Vergleiche der untersuchten Alternativen und potenzielle Gewinne:


Paarweise Vergleiche der Referenz mit Alternativen (potenzieller **Verlust**):


$$\pi (A_{i}, A_{j}) = \pi (A_{i}, A_{RP}) = \sum_{k=1}^{K} w_{i} \cdot P_{i} (d_{i}) \qquad \pi (A_{RP}, A_{i}) = \sum_{k=1}^{K} w_{i} \cdot P_{vi} (d_{i})$$

$$\pi (A_{RP}, A_{i}) = \sum_{k=1}^{K} w_{i} \cdot P_{vi} (d_{i})$$

Visualisierung der Ergebnisse:

Partielle Präordnung nach PROMETHEE I: Totalordnung nach PROMETHEE II:

Beispielhafte Anwendung - Entscheidungsproblem

Oberziel:

Identifikation eines nachhaltigen Konzeptes zur nachhaltigen energetischen Biomassenutzung auf regionaler Ebene

Untersuchte Alternativen:

- 1. Biogasgroßanlage mit anschließender Einspeisung (BGE)
- 2. Bioenergiedorf (BED)
- 3. Biogaseinzelhofanlage (BGA)

Daten auf Basis einer exemplarischen Anwendung von PROMETHEE im Rahmen des Projektes: "Nachhaltige Nutzung von Energie aus Biomasse im Spannungsfeld von Klimaschutz, Landschaft und Gesellschaft"

Beispielhafte Anwendung – Kriterien und Referenzen

Tabelle Kriterien:

Kriterium	Einheit E	PCE	BGE BED	BGA	Referenz		Min/Max	Cowiobt
Kitterium		BGE			Wert	RP	WIIII/Wax	Gewicht
Treibhausgaspotenzial	CO2-Eq./ha	-4937,00	-12724,00	-13734,00	0,00	SQ	-1,00	0,20
Kulturartenanzahl	#	2,00	3,00	2,00	3,00	MR	1,00	0,20
Kapitalwert	€	11.000.000	3.000.000	1.800.000	3.500.000	SQ	1,00	0,10
Flexibilität	Punkte	5,00	3,00	7,00	10,00	SQ	1,00	0,10
Akzeptanz (Mean Äst., Akz.)	Punkte	3,02	3,56	2,78	2,50	AL	1,00	0,10
Unabhängigkeit (Mean EVU, Roh)	Punkte	3,14	2,02	1,98	3,00	AL	-1,00	0,10
Transportaktivitäten	Fahrten/a	1978,00	839,00	153,00	153,00	SQ	-1,00	0,20

SQ = Status quo; **AL** = Aspiration Level; **MR** = Minimalanforderung

Erkenntnisse:

- Festlegen des Referenzpunktes und dessen Wertes führt zu weiteren Informationen prüft Eignung des Attributs und des Kriteriums
- Gleichzeitige Prüfung und Überdenken, ob das gewählte Attribut und das Kriterium geeignet sind, um hinsichtlich Nachhaltigkeit zu testen
- Referenzpunkt sollte durch ET in Zusammenarbeit mit Analyst festgelegt werden

Beispielhafte Anwendung – Ausgestaltung Präferenzfunktionen

Tabelle Präferenzfunktionen:

- Für den Faktor λ wurde universell ein Wert von 2,25 angesetzt
- Falls keine Verlustaversion seitens des Entscheiders vorliegt $\rightarrow \lambda = 1$

Kriterium	Min/Max	λ	Preference type	р	q	p _V	q _V
Treibhausgaspotenzial	-1,00	2,25	3,00	8797,00		3909,78	
Kulturartenanzahl	1,00	2,25	3,00	1,00		0,44	
Kapitalwert	1,00	2,25	3,00	10.000.000		4.444.444	
Flexibilität	1,00	2,25	3,00	3,00		1,33	
Akzeptanz (Mean Äst., Akz.)	1,00	2,25	5,00	0,20	0,10	0,09	0,04
Unabhängigkeit (Mean EVU, Roh)	-1,00	2,25	5,00	0,30	0,10	0,13	0,04
Transportaktivitäten	-1,00	2,25	3,00	1825,00		811,11	

(Empfehlung Kahneman, D.; Tversky, A. (1979)

Beispielhafte Anwendung – Berechnung der Outranking-Relationen und Flüsse

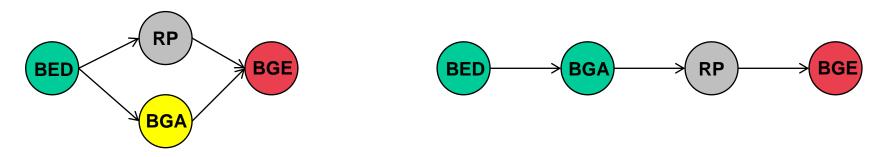
Tabelle Outranking-Relationen und Ein- und Ausgangsflüsse:

	BGE	BED	BGA	RP	Φ+
BGE	0	0,147	0,19	0,285	0,207
BED	0,7	0	0,312	0,4	0,471
BGA	0,567	0,198	0	0,4	0,388
RP	0,6	0,281	0,338	0	0,406
Φ-	0,622	0,209	0,28	0,362	

Gewinne und normale Paarvergleiche:

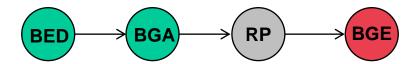
Ermittlung über normale Präferenzfunktionen

Verluste:


Ermittlung über Verlustfunktion

Visualisierung der Ergebnisse (erweitert)

Visualisierung der Ergebnisse: Mit Referenzpunkt und Prospect Theory

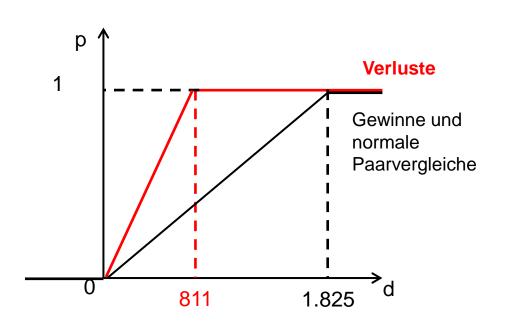

Partielle Präordnung nach PROMETHEE I: Totalordnung nach PROMETHEE II:

Ohne Referenzpunkt und Prospect Theory: Präordnung und Totalordnung identisch

Mit Referenzpunkt ohne Prospect Theory: Präordnung und Totalordnung identisch

Zusammenfassung und Ausblick

- Die Integration von Aspekten der Prospect Theory in PROMETHEE ermöglicht eine Bewertung auf Basis eines Referenzpunktes und erlaubt dadurch, zusätzlich Verlustaversion auszudrücken.
- Die Festlegung der Referenzalternative schafft zusätzliche Erkenntnisse im Rahmen der Entscheidungsunterstützung.
- Eine geeignete Visualisierung, insbesondere über die partielle Präordnung, liefert die Grundlage für eine Bewertung hinsichtlich tatsächlicher Nachhaltigkeit.
- Die intensivere Berücksichtigung von Unsicherheiten stellt eine zusätzliche potenzielle Erweiterung dar.
- Die Validierung des Modells (insbesondere hinsichtlich des Faktors λ) stellt eine Herausforderung dar, die im Rahmen des Projekts angegangen werden soll.



Backup-Folien

Beispielhafte Anwendung – Ausgestaltung Präferenzfunktionen

Beispiel: Präferenzfunktionen für das Kriterium "Transportaktivitäten"

Gewinne und normale Paarvergleiche:

$$p(d) = \begin{cases} 0 & d \le 0 \\ \frac{d}{1.825} & 0 < d \le 1.825 \\ 1 & d > 1.825 \end{cases}$$

Verluste:

$$p_{V}(d) = \begin{cases} 0 & d \le 0 \\ \frac{d \cdot 2,25}{1.825} & 0 < d \le \frac{1.825}{2,25} \\ 1 & d > \frac{1.825}{2,25} \end{cases}$$

Literatur

Brans, J.P.; Vincke, P.; Mareschal, B. (1986): How to Select and Rank Projects: The PROMETHEE Method, European Journal of Operational Research, 24, 228-238

Kahneman, D.; Tversky, A. (1979): Prospect Theory: An Analysis of Decision Under Risk, Econometrica, 47, 263-292

Korhonen, P.; Moskowitz, H.; Wallenius, J. (1990): Choice Behaviour in Interactive Multiple-Criteria Decision Making, Annals of Operations Research, 23, 161-179

Oberschmidt, J. (2010): Multikriterielle Bewertung von Technologien zur Bereitstellung von Strom und Wärme, Fraunhofer Verlag, ISI-Schriftenreihe Innovationspotenziale, Karlsruhe 2010

