

DEPARTMENT OF INFORMATION SYSTEMS

SCHOOL OF BUSINESS & ECONOMICS

Robust Efficiency of Airline Resource Schedules

Lucian Ionescu DoWoNO – Magdeburg 05/30/2013

Delays are a considerable Problem for Airlines

1.25 billion Euros overall costs due to delays in Europe

81 Euro on average per minute of delay in Europe

Cook, D. A. (2011) European airline delay cost reference values. London: University of Westminster. (Report worked out for the Performance Review Unit, EUROCONTROL, Brussels)

Minimizing the Real Costs of Airline Operations

Practical Goal Conflicts in Regular Daily Operations

Scope of the Project

Knowledge Discovery in Databases (KDD)

Ehmke, J. F. (2012) Integration of information and optimization models for routing in city logistics. Springer.

Target: A Prediction Model for Flight Departure Delays

We do not need to know why

but where and when delays occur.

Available Data

- 2.2 million real-world flight delay records
- Selected time span is 2003-2007

Slicing the Data using the Example of Daytime

Are these results repeatable when combining the dimensions?

Combining the Dimensions

Average delay per daytime differs by month!

Combining the Dimensions (2)

Weekday - Daytime

Average delay per daytime does not differ by workday!

Considering the Moments of the Delay Distributions

• We have a high correlation between the first three moments (Mean, Standard Deviation, Skewness)

Use the mean value as a location parameter for distributions?

Prediction Models for Delays

- 1 Build Decision Trees (Training Set)
- 2 Predict unknown Data (Validation Set)
- **3** Goodness-of-Fit can be tested by
 - Akaike Information Criterion (AIC)
 - Kullback-Leibler-Divergence (KLIC)

too generalized

overfitted

Simulation How do we evaluate the Robustness of Schedules?

Evaluating Airline Resource Schedules by Simulation

- How will schedules perform in Operations?
- Regular Operations vs. Irregular Operations
- Simulated Recovery Actions
 - Delay Propagation / Delay Absorption
 - Swaps of Resources
 - Cancellations
 - Reserve Crews
 - Repositioning
 - Rescheduling

• Mutual impacts and interdependencies of Crew Pairings and Aircraft Rotations

Measuring the Delay Absorption Capacity of a Schedule

- How many delays can be absorbed by buffers during simulation?
- Model for propagation over several network layers, e.g. crew and aircraft

$$r_f = \max\{s_f^A, d_f + t_f\}, \quad \forall f \in F$$

$$d_{f} = \max\left\{s_{f}^{D}, \max\left\{\begin{matrix} r_{a(f)} + g_{a(f),f}^{a} \\ r_{c(f)} + g_{c(f),f}^{c} \end{matrix}\right\}\right\} + X_{f}, \qquad \forall f \epsilon F$$
$$D_{f} = r_{f} - s_{f}^{A}, \qquad \forall f \epsilon F$$

Propagate over aircraft rotations

Propagate over crew pairings

$$R_f = D_f - X_f, \qquad \forall f \in F$$

Dück V., Ionescu L., Kliewer N., Suhl L. (2012): Increasing stability of crew and aircraft schedules. Transportation Research C, Vol. 20(1), 47-61.

Simulating rule-based Recovery for Crew and Aircraft

Simulating rule-based Recovery for Crew and Aircraft (2)

Robust Scheduling How do we increase the Rob

How do we increase the Robustness of Schedules?

Delay Risk Evaluation of Flights

- Risky connections between flights
- Follow-ons of flights may have different contexts

Increasing Stability – Integrated Solution Approach

Further details and computational results in: Dück V., Ionescu L., Kliewer N., Suhl L. (2012): Increasing stability of crew and aircraft schedules. Transportation Research C, Vol. 20(1), 47-61.

Iterative Approach adapted from: [Weide et al. (2009)] Weide, O., D. Ryan, and M. Ehrgott. An iterative approach to robust and integrated aircraft routing and crew scheduling. Computers & Operations Research 37 (5):833-844, 2010.

Motivation for Flexibility by Swap Opportunities

- High marginal costs for stability
- Uncertainty of the real delays during scheduling
- Do swap opportunities provide a reasonable enhancement to stable scheduling?

Increasing Flexibility by Swap Opportunities

- If a follow-on [f, s(f)] is likely to be disrupted in a specific context h
 - − Insert penalty variable $z \in \{0,1\}$:

$$\frac{|\omega \epsilon \Omega: \delta^{\omega}_{[f s(f)]_h} > t_{\delta}|}{|\Omega|} \cdot C \cdot Z$$

Insert constraints for *all* pairings containing this follow-on:

$$x - \sum_i y_i - z \le 0, \quad \forall x \in P, [f, s(f)]_h \in p$$

Symbols

- x: pairing containing a risky follow–on
- y: pairings that offer a swap opportunity for x
- $ω \in \Omega$: delay scenarios
- t_{δ} : delay tolerance
- c: cost multiplicator

Increasing Flexibility – Integrated Solution Approach

Summary & Outlook

Thank you for your attention!

Robust Efficiency of Airline Resource Schedules

Lucian lonescu Dipl. Wirt.-Inf.

Information Systems Department School of Business Administration Freie Universität Berlin

mail: <u>lucian.ionescu@fu-berlin.de</u> phone: +49 (30) 838 54057